Some Exact Results on 4-Cycles: Stability and Supersaturation
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Bandgap Extremization: Some Exact Results
We present here a variational method for maximizing the bandgap in a one-dimensional system where the potential is subject to given constraints. Two specific examples are studied in detail. In the first, we show that if the potential is constrained to lie between two values, the largest bandgap is obtained by a mixture of the highest and lowest potential an exact result valid in any dimension. ...
متن کاملSome Results on Chromaticity of Quasi-Linear Paths and Cycles
Let r > 1 be an integer. An h-hypergraph H is said to be r-quasi-linear (linear for r = 1) if any two edges of H intersect in 0 or r vertices. In this paper it is shown that r-quasi-linear paths P h,r m of length m > 1 and cycles C h,r m of length m > 3 are chromatically unique in the set of h-uniform r-quasi-linear hypergraphs provided r > 2 and h > 3r − 1.
متن کاملD-instantons and twistors: some exact results
We present some results on instanton corrections to the hypermultiplet moduli space in Calabi-Yau compactifications of Type II string theories. Previously, using twistor methods, only a class of D-instantons (D2-instantons wrapping A-cycles) was incorporated exactly and the rest was treated only linearly. We go beyond the linear approximation and give a set of holomorphic functions which, throu...
متن کاملSupersaturation and stability for forbidden subposet problems
We address a supersaturation problem in the context of forbidden subposets. A family F of sets is said to contain the poset P if there is an injection i : P → F such that p ≤P q implies i(p) ⊂ i(q). The poset on four elements a, b, c, d with a, b ≤ c, d is called a butterfly. The maximum size of a family F ⊆ 2 that does not contain a butterfly is ( n bn/2c ) + ( n bn/2c+1 ) as proved by De Boni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CSIAM transaction on applied mathematics
سال: 2023
ISSN: ['2708-0560', '2708-0579']
DOI: https://doi.org/10.4208/csiam-am.so-2021-0006